🌓
搜索
 找回密码
 立即注册

BIM+储能 | 电解水制氢 Hydrogen Production: Electrolysis

admin 2024-2-1 16:50:02 120324

Hydrogen Production 

Electrolysis

Electrolysis is a promising option for carbon-free hydrogen production from renewable and nuclear resources. Electrolysis is the process of using electricity to split water into hydrogen and oxygen. 

电解是利用可再生能源和核资源生产无碳氢的一个很有前途的选择。电解是用电把水分解成氢和氧的过程。

This reaction takes place in a unit called an electrolyzer. Electrolyzers can range in size from small, appliance-size equipment that is well-suited for small-scale distributed hydrogen production to large-scale, central production facilities that could be tied directly to renewable or other non-greenhouse-gas-emitting forms of electricity production.

这个反应在一个叫做电解槽的装置中进行。电解槽的尺寸可以从小型的、适合小规模分布式氢气生产的电器大小的设备到大型的、可以直接与可再生能源或其他非温室气体排放形式的电力生产联系在一起的中央生产设施不等。

How Does it Work?

Like fuel cells, electrolyzers consist of an anode and a cathode separated by an electrolyte. Different electrolyzers function in different ways, mainly due to the different type of electrolyte material involved and the ionic species it conducts.

像燃料电池一样,电解槽由电解质分开的阳极和阴极组成。不同的电解槽以不同的方式发挥作用,主要是由于所涉及的电解质材料的类型和它所导电的离子种类不同。

Polymer Electrolyte Membrane Electrolyzers

聚合物电解质膜电解槽

In a polymer electrolyte membrane (PEM) electrolyzer, the electrolyte is a solid specialty plastic material.

在聚合物电解质膜(PEM)电解槽中,电解质是一种固体的特种塑料材料。

  • Water reacts at the anode to form oxygen and positively charged hydrogen ions (protons).

  • 水在阳极反应生成氧和带正电的氢离子(质子)。

  • The electrons flow through an external circuit and the hydrogen ions selectively move across the PEM to the cathode.

  • 电子流过外部电路,氢离子选择性地穿过PEM到达阴极。

  • At the cathode, hydrogen ions combine with electrons from the external circuit to form hydrogen gas. Anode Reaction: 2H2O → O2 + 4H+ + 4e- Cathode Reaction: 4H+ + 4e- → 2H2

  • 在阴极,氢离子与来自外部电路的电子结合形成氢气。阳极反应:2H2O→O2 + 4H+ + 4e-阴极反应:4H+ + 4e-→2H2



Alkaline Electrolyzers

碱性电解槽

Alkaline electrolyzers operate via transport of hydroxide ions (OH-) through the electrolyte from the cathode to the anode with hydrogen being generated on the cathode side. Electrolyzers using a liquid alkaline solution of sodium or potassium hydroxide as the electrolyte have been commercially available for many years. Newer approaches using solid alkaline exchange membranes (AEM) as the electrolyte are showing promise on the lab scale.

碱性电解槽的工作原理是氢氧化物离子(OH-)通过电解液从阴极到阳极的传输,在阴极一侧产生氢。使用氢氧化钠或氢氧化钾的液体碱性溶液作为电解液的电解槽已在商业上使用多年。使用固体碱性交换膜(AEM)作为电解质的新方法在实验室规模上显示出前景。

Solid Oxide Electrolyzers

固体氧化物电解槽

Solid oxide electrolyzers, which use a solid ceramic material as the electrolyte that selectively conducts negatively charged oxygen ions (O2-) at elevated temperatures, generate hydrogen in a slightly different way.

固体氧化物电解槽使用固体陶瓷材料作为电解质,在高温下选择性地导电带负电荷的氧离子(O2-),以一种略有不同的方式产生氢气。

  • Steam at the cathode combines with electrons from the external circuit to form hydrogen gas and negatively charged oxygen ions.

  • 阴极的蒸汽与来自外部电路的电子结合,形成氢气和带负电的氧离子。


  • The oxygen ions pass through the solid ceramic membrane and react at the anode to form oxygen gas and generate electrons for the external circuit.

  • 氧离子穿过固体陶瓷膜,在阳极处反应形成氧气并产生电子供外部电路使用。

Solid oxide electrolyzers must operate at temperatures high enough for the solid oxide membranes to function properly (about 700°–800°C, compared to PEM electrolyzers, which operate at 70°–90°C, and commercial alkaline electrolyzers, which typically operate at less than 100°C). 

固体氧化物电解槽必须在足够高的温度下工作,以使固体氧化物膜正常工作(大约700°-800°C,而PEM电解槽的工作温度为70°-90°C,而商业碱性电解槽的工作温度通常低于100°C)。

Advanced lab-scale solid oxide electrolyzers based on proton-conducting ceramic electrolytes are showing promise for lowering the operating temperature to 500°–600°C. The solid oxide electrolyzers can effectively use heat available at these elevated temperatures (from various sources, including nuclear energy) to decrease the amount of electrical energy needed to produce hydrogen from water.

基于质子导电陶瓷电解质的先进实验室规模固体氧化物电解槽有望将工作温度降低至500°-600°C。固体氧化物电解槽可以有效地利用这些高温下的热量(来自各种来源,包括核能)来减少从水中产生氢所需的电能。

Why Is This Pathway 

Being Considered?

Electrolysis is a leading hydrogen production pathway to achieve the Hydrogen Energy Earthshot goal of reducing the cost of clean hydrogen by 80% to $1 per 1 kilogram in 1 decade ("1 1 1"). Hydrogen produced via electrolysis can result in zero greenhouse gas emissions, depending on the source of the electricity used. The source of the required electricity—including its cost and efficiency, as well as emissions resulting from electricity generation—must be considered when evaluating the benefits and economic viability of hydrogen production via electrolysis. 

电解是实现氢能源Earthshot目标的主要制氢途径,该目标是在10年内将清洁氢的成本降低80%至每公斤1美元(“11 11”)。根据使用的电力来源,通过电解产生的氢可以导致零温室气体排放。在评估电解制氢的效益和经济可行性时,必须考虑所需电力的来源,包括其成本和效率,以及发电产生的排放。

In many regions of the country, today's power grid is not ideal for providing the electricity required for electrolysis because of the greenhouse gases released and the amount of fuel required due to the low efficiency of the electricity generation process. Hydrogen production via electrolysis is being pursued for renewable (wind, solar, hydro, geothermal) and nuclear energy options. These hydrogen production pathways result in virtually zero greenhouse gas and criteria pollutant emissions; however, the production cost needs to be decreased significantly to be competitive with more mature carbon-based pathways such as natural gas reforming.

在该国的许多地区,由于排放的温室气体和由于发电过程的低效率而需要的大量燃料,今天的电网并不理想地提供电解所需的电力。通过电解制氢正在寻求可再生能源(风能、太阳能、水能、地热能)和核能的选择。这些制氢途径导致几乎零温室气体和标准污染物排放;然而,生产成本需要大幅降低,才能与更成熟的碳基途径(如天然气重整)竞争。

Potential for synergy with renewable energy power generation

与可再生能源发电的协同潜力

Hydrogen production via electrolysis may offer opportunities for synergy with dynamic and intermittent power generation, which is characteristic of some renewable energy technologies. For example, though the cost of wind power has continued to drop, the inherent variability of wind is an impediment to the effective use of wind power. 

通过电解制氢可以提供与动态和间歇性发电协同的机会,这是一些可再生能源技术的特点。例如,尽管风力发电的成本持续下降,但风力固有的可变性阻碍了风力的有效利用。

Hydrogen fuel and electric power generation could be integrated at a wind farm, allowing flexibility to shift production to best match resource availability with system operational needs and market factors. Also, in times of excess electricity production from wind farms, instead of curtailing the electricity as is commonly done, it is possible to use this excess electricity to produce hydrogen through electrolysis.

氢燃料和电力可以在风电场中集成,允许灵活地转移生产,以最佳地匹配系统运行需求和市场因素的资源可用性。此外,在风力发电场产生多余电力的时候,与其像通常那样减少电力,还可以利用这些多余的电力通过电解产生氢气。

It is important to note...

  • Today's grid electricity is not the ideal source of electricity for electrolysis because most of the electricity is generated using technologies that result in greenhouse gas emissions and are energy intensive. Electricity generation using renewable or nuclear energy technologies, either separate from the grid, or as a growing portion of the grid mix, is a possible option to overcome these limitations for hydrogen production via electrolysis.

  • 今天的电网电力并不是电解的理想电力来源,因为大多数电力是使用导致温室气体排放的技术产生的,而且是能源密集型的。利用可再生能源或核能技术发电,无论是与电网分离,还是作为电网组合的一部分,都是克服电解制氢这些限制的可能选择。


  • The U.S. Department of Energy and others continue efforts to bring down the cost of renewable-based electricity production and develop more efficient fossil-fuel-based electricity production with carbon capture, utilization, and storage. Wind-based electricity production, for example, is growing rapidly in the United States and globally.

  • 美国能源部和其他部门继续努力降低以可再生能源为基础的电力生产成本,并通过碳捕获、利用和储存开发更高效的以化石燃料为基础的电力生产。例如,风能发电在美国和全球都在迅速增长。


Research Focuses 

On Overcoming Challenges


  • Meeting the Hydrogen Shot clean hydrogen cost target of $1/kg H2 by 2030 (and interim target of $2/kg H2 by 2025) through improved understanding of performance, cost, and durability trade-offs of electrolyzer systems under predicted future dynamic operating modes using CO2-free electricity.

  • 通过提高对电解槽系统在预测的未来动态运行模式下使用无二氧化碳电力的性能、成本和耐用性权衡的理解,实现到2030年实现1美元/公斤氢气的氢气清洁成本目标(到2025年实现2美元/公斤氢气的中期目标)。


  • Reducing the capital cost of the electrolyzer unit and the balance of the system.

  • 降低电解槽装置的资金成本和系统的平衡。


  • Improving energy efficiency for converting electricity to hydrogen over a wide range of operating conditions.

  • 在广泛的操作条件下提高电能转化为氢的能源效率。


  • Increasing understanding of electrolyzer cell and stack degradation processes and developing mitigation strategies to increase operational life.

  • 加深对电解槽和电解槽退化过程的了解,并制定缓解策略以延长使用寿命。

扫一扫

113123.jpg
随机推荐

最新主题

0 回复

高级模式
游客
返回顶部